

BCS

API

Programmer’s Manual

Ver 3.4

January 2017

Contents

1.0 Introduction 6

2.0 Connection to the BCS Clearing system 7

3.0 Configuration file 8

4.0 Type definitions 10

4.1 GK_Reply_t 11
4.2 GK_MarketReply_t 12
4.3 GK_ClassType_t 13
4.4 GK_Status_t 13
4.5 GK_Chain_t 14
4.6 GK_Notification_t 14
4.7 GK_ApplicationData_t 15
4.8 GK_Callback_t 15
4.9 GK_Tag_t 15
4.10 GK_Data_t 15
4.11 GK_Transaction_t 16
4.12 GK_Subscription_t 16
4.13 GK_Inquire_t 16
4.14 GK_Context_t 16
4.15 GK_Connection_t 16
4.16 GK_Length_t 16
4.17 GK_Byte_t 17
4.18 GK_UnzipHelper_t 17

5.0 Main callback functions 18

5.1 GK_Initialize 18
5.2 GK_Terminate 18
5.3 GK_CreateContext 18
5.4 GK_Dispatch 19
5.5 GK_ReleaseContext 19
5.6 GK_Connect 20
5.7 GK_Disconnect 21
5.8 GK_CreateTransaction 22
5.9 GK_DestroyTransaction 22
5.10 GK_Submit 23
5.11 GK_Subscribe 24
5.12 GK_UnSubscribe 25
5.13 GK_Inquire 26
5.14 GK_GetVersion 27

Summary

Programmer’s
Manual
January 2017

5.15 GK_ConnectEx 28

6.0 Introduction to Callbacks 30

6.1 Connection request result 30
6.2 Disconnect request result 31
6.3 Connection monitoring 31
6.4 Application message submission result 33
6.5 Application message subscription result 33
6.6 Application message unsubscription result 34
6.7 Data inquiry request result 34
6.8 Data subscription notification 34
6.9 Data inquiry notification 35

7.0 Retrieving data from callback objects 37

7.1 Connection request result 37
7.2 GK_GetNotificationType 37
7.3 GK_GetConnectionStatus 37
7.4 GK_GetTransactionID 38
7.5 GK_GetMarketResponse 38
7.6 GK_GetSubscriptionID 39
7.7 GK_GetInquireID 40
7.8 GK_GetClassName 40
7.9 GK_DecodeData 41
7.10 GK_GetValueString 41
7.11 GK_GetValueLong 42
7.12 GK_GetValueDouble 42
7.13 GK_GetValueInt 43
7.14 GK_GetChain 44
7.15 GK_GetBinaryData 44

8.0 Building application data messages 45

8.1 GK_CreateApplicationData 45
8.2 GK_EncodeData 45
8.3 GK_SetValueString 46
8.4 GK_SetValueLong 46
8.5 GK_SetValueDouble 46
8.6 GK_SetValueInt 47
8.7 GK_DestroyApplicationData 47
8.8 GK_SetTransactionID 48

Programmer’s
Manual
January 2017

9.0 Unzipping callback functions 49

9.1 GK_CreateUnzipHelper 49
9.2 GK_DestroyUnzipHelper 50
9.3 GK_InitializeUnzipHelper 50
9.4 GK_ClearUnzipHelper 51
9.5 GK_UnzipBinaryData 51

10.0 Recovery 53

10.1 Services 53
10.2 Subscribe.System.ServiceMarketStatus 54
10.3 Notify.System.ServiceMarketStatus 54
10.4 Recovery Simulation in CDS (Test) environment 55

Programmer’s
Manual
January 2017

 6

1.0 Introduction

This document describes the main features of BCS API library (GKAPI). It is to be used in
conjunction with the BCS API Data Layouts document in order to have an overview of how
to interface the BCS Clearing system using the BCS API libraries.

The BCS API library provides developers with a set of callback functions which allows third
party applications to correctly interface toward the BCS Clearing system, managing
connections, transactions, subscriptions and notifications. It also defines operation types
(Connect, Submit, Subscribe, etc.) and response types (CallBackConnect,
CallBackSubscribe, CallBackData, etc…).

The BCS API library:

• is a thread-safe library;

• allows connections to the BCS Clearing System through one or more application
servers;

• implements a proprietary protocol to exchange application data messages; it
maintains a live connection until the client disconnection has been requested;

• manages configurable application windows;

• monitors the TCP/IP connection and alerts when connectivity problems arise;

• traces all working activities;

Programmer’s
Manual
January 2017

 7

2.0 Connection to the BCS Clearing system

In order to properly connect to the BCS Clearing System, a set of technical callback
functions should be used. The following steps need to be executed before
sending/receiving data:

 Initialize: this allows to initialize the BCS API library;

 Create Context: this allows to establish a physical connection to the specified
application server of the BCS Clearing system; the Context Id returned by the callback
should be used as an input parameter in any request sent to the system (Submit,
Inquire, Subscribe, UnSubscribe, …);

 Start a dedicated thread to manage Dispatch: this allows to handle callbacks as soon as
an event raises; a thread should be created for each working context;

 Connect: this allows to start a communication session to the BCS Clearing system;

 Create Transaction: this allows to get a Transaction Id which has to be used in
every Submit sent to the BCS Clearing system; if the system is still processing a
submit request, it will reject any other submit request using the same Transaction
Id, whereas it will accept requests with different Transaction Ids (previously
received with a Create Transaction);

The following steps have to be executed in order to properly disconnect from the BCS
Clearing system:

 Destroy Transaction: this allows to release all internal structures set up by the
CreateTransaction function;

 Disconnect: this allows to disconnect from the BCS Clearing system;

 Release Context: this allows to release/destroy a working context;

 Terminate: this allows to release the BCS API library;

Programmer’s
Manual
January 2017

 8

3.0 Configuration file

The BCS API library configuration file (GKApi.cfg) allows to define:

• the keep-alive message frequency;

• the application windows size;

• the application servers of the BCS Clearing system the BCS library should connect to;

The configuration file structure is defined as follows:

[GENERIC_SETTINGS]
TRACE_FILE=.\GKApi.log // Application messages trace output file.
TRACE_LEVEL=ERR // ERR,WRN,INF,DBG
MESSAGES_FILE=.\GKMessages.cfg // Configuration file which contains
// debugging messages
CALLBACK_QUEUE_SIZE=1024 // Maximum number of queued call-backs
MAX_NUMBER_OF_CONTEXT=512 // Maximum number of contexts that can be

// created and used at the same time (this value
// depends on the number of available sockets)

[GATEMARKET_SERVERS]
SERVER_LIST=METAMARKET01;METAMARKET02
// List of available application servers

[METAMARKET01]
TCP_IP= 213.92.93.177
TCP_PORT= 34900
KEEPALIVE_TIMEOUT=30 // Expressed in seconds
APPLICATION_WINDOW_SIZE=20000

// Maximum number of pending requests that can
// be managed at the same time for the current
// context.

TRACE_LEVEL=DBG // ERR,WRN,INF,DBG
TRANSACTION_BUFFER_SIZE=20000

// Maximum number of parallel transactions to be
// preallocated and used by the GK-API.
// If exceeded, new resources will be allocated
// upon request

SUBSCRIPTION_BUFFER_SIZE=20000
// Maximum number of parallel subscriptions to
// be preallocated and used by the GK-API.
// If exceeded, new resources will be allocated

Programmer’s
Manual
January 2017

 9

// upon request
INQUIRE_BUFFER_SIZE=20000 // Maximum number of parallel inquiries to be

// preallocated and used by the GK-API.
// If exceeded, new resources will be allocated
// upon request

TCP_BUFFER_SIZE=30000 // Maximum I/O buffer size expressed in bytes.

[METAMARKET02]
TCP_IP=213.92.93.178
TCP_PORT=34900
KEEPALIVE_TIMEOUT=30 // Expressed in seconds
APPLICATION_WINDOW_SIZE=20000

// Maximum number of pending requests that can
// be managed at the same time for the current
// context.

TRACE_LEVEL=DBG // ERR,WRN,INF,DBG
TRANSACTION_BUFFER_SIZE=20000

// Maximum number of parallel transactions to be
// preallocated and used by the GK-API.
// If exceeded, new resources will be allocated
// upon request

SUBSCRIPTION_BUFFER_SIZE=20000
// Maximum number of parallel subscriptions to
// be preallocated and used by the GK-API.
// If exceeded, new resources will be allocated
// upon request

INQUIRE_BUFFER_SIZE=20000 // Maximum number of parallel inquiries to be
// preallocated and used by the GK-API.
// If exceeded, new resources will be allocated
// upon request

TCP_BUFFER_SIZE=30000 // Maximum I/O buffer size expressed in bytes.

Programmer’s
Manual
January 2017

 10

4.0 Type definitions

The BCS API library manages the following data types:

 GK_Reply_t Reply code from each protocol session

 GK_MarketReply_t Reply structure to handle returned events from previous
requests

 GK_ClassType_t Application data layout type

 GK_Status_t Connection status types

 GK_Chain_t Types for controlling chains for snapshot information

 GK_ApplicationData_t Type structure which contains application data to be
sent

 GK_Callback_t Call-back generic structure

 GK_Tag_t User Tag returned by each call-back; (void*)

 GK_Data_t Application data handle (long)

 GK_Transaction_t Transaction identifier (long)

 GK_Subscription_t Subscription identifier (long)

 GK_Inquire_t Inquire identifier (long)

 GK_Context_t Connection session identifier

 GK_Connection_t Identifier of a communication channel with an
application server. It is a socket corresponding to
connection on a context

 GK_Notification_t Call-back notification types

 GK_Byte_t Data type used for buffers containing binary data

 GK_Length_t Data buffer’s size

 GK_UnzipHelper_t Internal structure used to unzip binary compressed data

Programmer’s
Manual
January 2017

 11

4.1 GK_Reply_t

Contains return code coming back from a protocol session. It is an enumerated type and may
assume the following values:

 GK_SUCCESS Request successfully completed

 GK_FAILED Generic error. Usually returned by all
functions that extract data from call-backs

 GK_INVALID_CONFIG_FILE Configuration file not valid

 GK_INVALID_SERVER Application server not valid

 GK_INVALID_HANDLE Handle not valid

 GK_API_ERROR Internal API error

 GK_API_NOT_INITIALIZED API not initialized

 GK_API_ALREADY_INITIALIZED API already initialized

 GK_INVALID_CONTEXT Market context not valid

 GK_SERVER_UNREACHABLE Application server not reachable

 GK_INVALID_TRANSACTIONID Request refused. Transaction identifier not
valid

 GK_INVALID_SUBSCRIPTIONID Request refused. Subscription identifier
not valid

 GK_COMMAND_ON_GOING Request refused. Request of the same
type is still on going

 GK_TYPE_MISMATCH Attempting to read -a field using a wrong
field-type.

 GK_CONTEXT_BUSY Context is busy whenever it is trying to
connect to a context already in use

 GK_MISSING_CONNECTION A request has been sent before
establishing a connection

 GK_OVERLOAD The application window is full. The client
application must wait for the completion of
some previously issued requests before
sending a new one

 GK_INVALID_PARAMETER
Request refused. One or more supplied
parameters are null or invalid.

 GK_DATA_ERROR
Request refused. Supplied data are invalid
or corrupted.

Programmer’s
Manual
January 2017

 12

 GK_MORE_OUTPUT_AVAILABLE
Request successfully completed. More
output space have to be provided to
complete the whole operation.

 GK_MORE_INPUT_NEEDED
Request successfully completed. More
input data are required to complete the
whole operation.

4.2 GK_MarketReply_t

Contains return codes from a market gateway or clearing house system. It is an enumerated
type and may assume the following values:

 GK_REQUEST_ACCEPTED Request accepted

 GK_REQUEST_REJECTED Request refused. Generic Error

 GK_REQUEST_WARNING Request has been accepted but a warning
situation arises (e.g one of the contexts is
not connected)

 GK_ALREADY_CONNECTED Connection already established

 GK_INVALID_MARKET Request refused. Market name is invalid

 GK_INVALID_CLASS Request refused. Class name is invalid

 GK_NO_MARKET_CONTEXT Request refused. Connection has not been
established

 GK_INVALID_FIELD Request refused. One of the class fields is
invalid

 GK_REQUEST_ON_GOING Request refused. A request of the same type
is already pending

 GK_LICENCE_ERROR Maximum number of connections reached

 GK_PROPOSAL_ALREADY_EXISTS A proposal on the same transaction already
exists

 GK_PROPOSAL_NOT_EXISTS A proposal on the transaction does not exist

 GK_INVALID_PROPOSAL_KEY Invalid proposal referenced

 GK_MISSING_FIELD_VALUE Mandatory field not set

 GK_ACCESS_DENIED User authentication completed
unsuccessfully

 GK_INSUFFICIENT_PRIVILEGES Insufficient privileges

Programmer’s
Manual
January 2017

 13

 GK_WRONG_FIELD_VALUE A field contains a wrong value (e.g. Side field
is different from Buy and Sell)

 GK_SERVER_NOT_AVAILABLE Application server unreachable

 GK_NOT_CONNECTED Request refused. Connection not established

 GK_WRONG_PARAMETER Request refused. Some parameters are
wrong (e.g. parameter non allocated, etc.)

 GK_TIMED_OUT Request refused. Client has been
disconnected due to keep-alive timeout

4.3 GK_ClassType_t

Defines a class type and is an enumerated type and may assume the following values:

 GK_META_CLASS Meta-market application data layout, i.e. class type
used for a market class that merges all differences
among different market class into a single class

 GK_MARKET_CLASS Native market application data layout

4.4 GK_Status_t

Defines a market connection status. It is an enumerated type and may assume the following
values:

 GK_CONNECTION_UP Connection is active

 GK_CONNECTION_DOWN Connection is broken

 GK_CONNECTION_WARNING Applicable to OnMarketStatus event only: this
means that not all connections are active.
Depending on the market, it means that the
bandwidth is being reduced or, alternatively,
that interaction with the market can be
seriously damaged

 GK_SERVER_DOWN Connection lost from application server

Programmer’s
Manual
January 2017

 14

4.5 GK_Chain_t

Defines a chain type of snapshot data coming from events. It is an enumerated type and may
assume the following values:

 GK_CHAIN_CONTINUE New snapshot data can arrive

 GK_CHAIN_END Snapshot data are ended

 GK_CHAIN_NO_DATA Snapshot data not available

4.6 GK_Notification_t

Defines notification types of call-backs. It is an enumerated type and may assume the following
values:

 GK_MARKET_STATUS_NOTIFICATION

 GK_CONNECTION_RESPONSE_NOTIFICATION

 GK_DISCONNECTION_RESPONSE_NOTIFICATION

 GK_TRANSACTION_STATUS_NOTIFICATION

 GK_SUBSCRIPTION_STATUS_NOTIFICATION

 GK_SUBMIT_RESPONSE_NOTIFICATION

 GK_SUBSCRIBE_RESPONSE_NOTIFICATION

 GK_UNSUBSCRIBE_RESPONSE_NOTIFICATION

 GK_INQUIRE_RESPONSE_NOTIFICATION

 GK_NOTIFY_DATA_NOTIFICATION

 GK_INQUIRE_DATA_NOTIFICATION

 GK_SET_NOTIFICATION_PERIOD_NOTIFICATION

 GK_BINARY_INQUIRE_DATA_NOTIFICATION

Programmer’s
Manual
January 2017

 15

4.7 GK_ApplicationData_t

Defines the template of application messages to be sent to a market or clearing house system.

typedef GK_ApplicationData_t
(

GK_ClassType_t classType,
const char* className,
const char* data

)

Fields can have the following values:

Type Property Name Description

GK_ClassType_t ClassType Class type or application data
layout type (meta-market or
market class)

const char* ClassName Class name

const char* Data Data layout in the format
field=value

4.8 GK_Callback_t

Defines the template of call-backs.

typedef void (*GK_Callback_t)
(

GK_Context_t context, // Context who did generate the event
GK_Data_tgkData, // Data Handle
GK_Tag_t gkTag // User Tag

)

4.9 GK_Tag_t

The user can assign a tag to each request. The call-back will return it to the caller.

typedef const void * GK_Tag_t;

4.10 GK_Data_t

Data handle returned by the call-back. It can be used to find data coming from the call-back
itself.

Programmer’s
Manual
January 2017

 16

typedef long GK_Data_t;

4.11 GK_Transaction_t

Transaction Id. This value has to be used in every Submit sent to the BCS Clearing
system; if the system is still processing a submit request, it will reject any other submit
request using the same Transaction Id, whereas it will accept requests with different
Transaction Ids (previously received with a Create Transaction).

typedef long GK_Transaction_t;

4.12 GK_Subscription_t

Subscription Id. This value identifies a Subscription sent to the BCS Clearing system.

typedef long GK_Subscription_t;

4.13 GK_Inquire_t

Inquiry Id. This value identifies an Inquire sent to the BCS Clearing system.

typedef long GK_Inquire_t;

4.14 GK_Context_t

Context Id. This value has to be used as an input parameter in any request sent to the system.

typedef long GK_Context_t;

4.15 GK_Connection_t

Connection Id. This value identifies a socket connection to an application server. The client
application must use it in the ‘select’ function to handle asynchronous events.

typedef int GK_Connection_t;

4.16 GK_Length_t

Data buffer’s size. Given a pointer to a data buffer, it defines how many elements of the buffer
are significant starting from the element pointed to.

typedef unsigned int GK_Length_t;

Programmer’s
Manual
January 2017

 17

4.17 GK_Byte_t

Data type used for binary data buffers. It defines the data type of buffer elements used to store
binary data.

typedef unsigned char GK_Byte_t;.

4.18 GK_UnzipHelper_t

Structure used to unzip binary compressed data. It is managed internally by the GK-API.

typedef void* GK_UnzipHelper_t;

Programmer’s
Manual
January 2017

 18

5.0 Main callback functions

The following sections describe all the BCS API callback functions.

5.1 GK_Initialize

GK_Reply_t GK_Initialize(const char* ConfigFile);

Parameters ConfigFile Pathname of the file which contains

configuration parameters for the GK-
API

Return values GK_SUCCESS Initialization has been successfully
completed

 GK_INVALID_CONFIG_FILE Initialization failure. Configuration file
not found or corrupted

 GK_API_ERROR Internal error
 GK_API_ALREADY_INITIALIZED GK-API already initialized
 GK_INVALID_PARAMETER ConfigFile is null

Description This function must be called before any other GK-API function in order to

initialize the GK-API library.

5.2 GK_Terminate

GK_Reply_t GK_Terminate();

Parameters none
Return values GK_SUCCESS Initialization has been successfully

completed
 GK_API_NOT_INITIALIZED API not initialized

Description This function must be called in order to release the GK-API library.

5.3 GK_CreateContext

GK_Reply_t GK_CreateContext (const char* serverName,
 GK_Context_t* pContext,
 GK_Connection_t* pConnection);

Parameters serverName Name of the application server through

which connection must be set up (one
from the list in SERVER_LIST in the
configuration file)

 pContext Working context identifier returned by
the GK-API

Programmer’s
Manual
January 2017

 19

 pConnection Identifier of a socket connection to the
application server. The client
application must use it in ‘select’
function to handle asynchronous events

Return values GK_SUCCESS Context available, socket connection

established
 GK_API_ERROR Internal error
 GK_INVALID_SERVER Application server name invalid (check

if it is present in the configuration file
 GK_SERVER_UNREACHABLE Server unreachable
 GK_API_NOT_INITIALIZED GK-API not initialized
 GK_INVALID_PARAMETER At least one of serverName, pContext

or pConnection is null

Description This function must be called to establish a physical connection to the specified

application server. A Context Id is returned. This identifier must be used in any
other request sent to the BCS Clearing system (i.e. Submit, Inquire, Subscribe,
UnSubscribe, …). It is possible to create more than one context.

5.4 GK_Dispatch

GK_Reply_t GK_Dispatch (GK_Context_t context);

Parameters context Working context identifier

Return values GK_SUCCESS Dispatch successfully completed
 GK_API_ERROR Internal error
 GK_INVALID_CONTEXT Context not valid
 GK_API_NOT_INITIALIZED API not initialized

Description This function is used to handle callbacks. GK_Dispatch must be called as

soon as an event raises from the working context. For this purpose, before
calling GK_Dispatch, call “select” API on the socket returned by
GK_CreateContext using a positive timeout values (i.e. not zero; usual
timeout value is 5 seconds). Moreover, it is recommended to call
GK_Dispatch using a dedicated thread, one for each working context.

5.5 GK_ReleaseContext

GK_Reply_t GK_ReleaseContext (GK_Context_t context);

Parameters context Working context identifier

Return GK_SUCCESS Context successfully released.

Programmer’s
Manual
January 2017

 20

values:
 GK_API_ERROR GK-API not initialized or internal error
 GK_INVALID_CONTEXT Context not valid
 GK_API_NOT_INITIALIZED GK-API not initialized

Description This function must be called to release/destroy a working context.

5.6 GK_Connect

GK_Reply_t GK_Connect (GK_Context_t context,
 const char* userName,
 const char* password,
 const char* market,
 GK_Callback_t pCallbackResponse,
 GK_Callback_t pCallbackMarketStatus,
 GK_Tag_t gkTag)

Parameters context Active context identifier through which a

connection must be performed.
 userName Name of the user requiring the

connection
 password Password of the user requiring the

connection.
 market Market or Clearing House name to

which a connection is requested (e.g.
MTA, CCG, ...)

 pCallbackResponse Callback to handle a notification event
for the related request.

 pCallbackMarketStatus Callback to handle a notification event
for the connection status

 gkTag User tag returned by the callback

Return
values:

GK_SUCCESS Connection request successfully
executed

 GK_API_ERROR Internal error
 GK_INVALID_CONTEXT Context is not valid
 GK_SERVER_UNREACHABLE Server unreachable
 GK_API_NOT_INITIALIZED API not initialized
 GK_COMMAND_ON_GOING A connection request is still on going

and a notification event for the
previous request must be received

 GK_CONTEXT_BUSY Context is already in use (a connection
on the context is already in place)

 GK_INVALID_PARAMETER At least one of userName, password or
market is null or too long

 from pCallbackResponse

Programmer’s
Manual
January 2017

 21

 GK_REQUEST_ACCEPTED Connection accepted
 GK_REQUEST_REJECTED Connection refused
 GK_ALREADY_CONNECTED Connection already in place
 GK_INVALID_MARKET MarketName is invalid
 GK_ACCESS_DENIED Unknown user
 GK_LICENCE_ERROR Maximum number of concurrent

connections exceeded
 GK_INSUFFICIENT_PRIVILEGES User cannot connect to the specified

market

 from pCallbackMarketStatus

 GK_MARKET_STATUS_NOTIFICATION
 GK_CONNECTION_UP All connections are active

 GK_CONNECTION_WARNIN
G

At least one connection is active, while
one or more other connections can be
down

 GK_CONNECTION_DOWN No connection is active

 GK_SERVER_DOWN Application server not reachable

 GK_TRANSACTION_STATUS_NOTIFICATION
 GK_CONNECTION_UP Transaction is active

 GK_CONNECTION_DOWN Transaction is not active

 GK_SUBSCRIPTION_STATUS_NOTIFICATION
 GK_CONNECTION_UP Subscription is active

 GK_CONNECTION_DOWN Subscription is not active

Description This function must be invoked to establish a connection to the BCS Clearing

system.

5.7 GK_Disconnect

GK_Reply_t GK_Disconnect (GK_Context_t context,
 GK_Callback_t pCallbackResponse,
 GK_Tag_t gkTag);

Parameters: context Context identifier
 pCallbackResponse Call-back for request notification
 gkTag User tag returned by the call-back

Return
values:

GK_SUCCESS Disconnection successfully completed

 GK_API_ERROR Internal error
 GK_INVALID_CONTEXT Context is not valid
 GK_SERVER_UNREACHABLE Server unreachable
 GK_API_NOT_INITIALIZED API not initialized

Programmer’s
Manual
January 2017

 22

 from pCallbackResponse
 GK_REQUEST_ACCEPTED Connection accepted
 GK_REQUEST_REJECTED Connection refused
 GK_NOT_CONNECTED Connection not existing

Description This function must be invoked to release a connection to the BCS Clearing

system.

5.8 GK_CreateTransaction

GK_Reply_t GK_CreateTransaction
 (GK_Context_t context,
 GK_Transaction_t* pTransactionID);

Parameters: context Context identifier
 pTransactionID Transaction identifier returned by the

function

Return values GK_SUCCESS Transaction creation successfully

completed
 GK_INVALID_CONTEXT Context is not valid
 GK_API_ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized
 GK_INVALID_PARAMETER pTransactionID is null

Description: This function must be invoked in order to create a transaction within the BCS

Clearing system. A transaction is a physical connection between the client
and the BCS Clearing system which allows handling fault detection and load
balancing. The Transaction Id returned by this function has to be used in
every Submit sent to the BCS Clearing system; if the system is still
processing a submit request, it will reject any other submit request using
the same Transaction Id, whereas it will accept requests with different
Transaction Ids (previously received with a Create Transaction).

5.9 GK_DestroyTransaction

GK_Reply_t GK_DestroyTransaction
 (GK_Context_t context,
 GK_Transaction_ t transactionID);

Parameters: context Context identifier
 transactionID Transaction identifier

Return values GK_SUCCESS Destroy transaction successfully

completed
 GK_INVALID_TRANSACTIONID Transaction identifier is not valid
 GK_INVALID_CONTEXT Context not valid

Programmer’s
Manual
January 2017

 23

 GK_API_ERROR Internal error
 GK_API_NOT_INITIALIZED API not initialized
 GK_SERVER_UNREACHABLE Server unreachable

Description: This function must be invoked to release all internal structures set up by the

CreateTransaction function. It must be invoked before the GK_Disconnect
function.

5.10 GK_Submit

GK_Reply_t GK_Submit (GK_Context_t context,
 GK_Transaction_t transactionID,
 GK_ApplicationData_t* applicationData,
 GK_Callback_t pCallbackResponse,
 GK_Tag_t gkTag);

Parameters: context Context identifier
 transactionID Transaction identifier
 applicationData Application data layout to be

executed. It can be built using proper
functions (see below)

 pCallbackResponse Callback to handle a notification event
for that request.

 gkTag User tag returned by the callback

Return values GK_SUCCESS Submit request successfully executed
 GK_INVALID_CONTEXT Context not valid
 GK_API_ERROR Internal error
 GK_INVALID_TRANSACTIONID Transaction identifier is not valid
 GK_API_NOT_INITIALIZED GK-API not initialized
 GK_SERVER_UNREACHABLE Server unreachable
 GK_COMMAND_ON_GOING A connection request is still on going

and a notification event for the
previous request must be received

 GK_OVERLOAD Application window is exhausted. The
caller must wait for completion of
some previous accepted requests

 GK_INVALID_PARAMETER applicationData is null

 from pCallbackResponse
 GK_REQUEST_ACCEPTED Connection accepted
 GK_REQUEST_REJECTED Connection refused
 GK_REQUEST_WARNING Request accepted with some specified

warning
 GK_NO_MARKET_CONTEXT The market or clearing house context

is not available
 GK_INVALID_FIELD The specified field name is invalid

Programmer’s
Manual
January 2017

 24

 GK_REQUEST_ONGOING A previous submit operation on the
same transaction identifier is still on
going

 GK_PROPOSAL_ALREADY_EXIST
S

A proposal belonging to the specified
transaction identifier already exists

 GK_PROPOSAL_NOT_EXISTS A proposal belonging to the specified
transaction identifier does not exist

 GK_INVALID_PROPOSAL_KEY Invalid proposal referenced
 GK_MISSING_FIELD_VALUE Mandatory Field is emptymissing
 GK_INVALID_CLASS Class not valid
 GK_NOT_CONNECTED Connection in not in place
 GK_INVALID_TRANSACTIONID Transaction identifier is not valid

Description: This function must be invoked to send a Submit data structure to the BCS

Clearing system. If this message will be accepted, a callback will be fired. if
the system is still processing a submit request, it will reject any other
submit request using the same Transaction Id, whereas it will accept
requests with different Transaction Ids (previously received with a Create
Transaction).

5.11 GK_Subscribe

GK_Reply_t GK_Subscribe (GK_Context_t context,
 GK_ApplicationData_t* applicationData,
 GK_Callback_t pCallbackResponse,
 GK_Callback_t pCallbackData,
 GK_Tag_t gkTag,
 GK_Subscription_t* pSubscriptionID);

Parameters: context Context identifier
 applicationData Application Data layout to be

executed. It can be built using proper
functions (see below)

 pCallbackResponse Call-back to handle a notification
event for that request.

 pCallbackData Call-back to handle a notification
event containing returned data.

 gkTag User tag returned by the call-back
 pSubscriptionID Unique identifier for the requested

subscription

Return values GK_SUCCESS Subscription request successfully

executed
 GK_INVALID_CONTEXT Context not valid
 GK_API_ERROR Internal error
 GK_INVALID_ SUBSCRIPTIONID Transaction identifier is not valid
 GK_API_NOT_INITIALIZED GK-API not initialized
 GK_SERVER_UNREACHABLE Server unreachable

Programmer’s
Manual
January 2017

 25

 GK_OVERLOAD Application window is exhausted. The
caller must wait for completion of
some previous accepted requests

 GK_INVALID_PARAMETER At least one of applicationData or
pSubscriptionID is null

 from pCallbackResponse
 GK_REQUEST_ACCEPTED Connection accepted
 GK_REQUEST_REJECTED Connection refused
 GK_REQUEST_WARNING Request accepted with some specified

warnings
 GK_NO_MARKET_CONTEXT The market or clearing house context

is not available
 GK_INVALID_FIELD The specified field name is invalid
 GK_MISSING_FIELD_VALUE Mandatory field is empty
 GK_INVALID_CLASS Class not valid
 GK_NOT_CONNECTED Connection has not been set
 GK_WRONG_PARAM Wrong parameters passed

Description: This function must be invoked to send a Subscribe data structure to the

BCS Clearing system.

5.12 GK_UnSubscribe

GK_Reply_t GK_UnSubscribe (GK_Context_t context,
 GK_Subscription_t* pSubscriptionID,
 GK_Callback_t pCallbackResponse,
 GK_Tag_t gkTag);

Parameters: context Context identifier
 pSubscriptionID Unique identifier for the requested

subscription to be ended
 pCallbackResponse Call-back to handle a notification

event for that request.
 gkTag User tag returned by the callback

Return values GK_SUCCESS Unsubscribe request successfully

executed
 GK_INVALID_CONTEXT Context not valid
 GK_API_ERROR Internal error
 GK_INVALID_ SUBSCRIPTIONID Suscription identifier is not valid
 GK_API_NOT_INITIALIZED API not initialized
 GK_SERVER_UNREACHABLE Server unreachable
 GK_COMMAND_ON_GOING A connection request is still on going

and a notification event for the
previous request must be received

 GK_OVERLOAD Application window is exhausted. The

Programmer’s
Manual
January 2017

 26

caller must wait for completion of
some previous accepted requests

 from pCallbackResponse
 GK_REQUEST_ACCEPTED Connection accepted
 GK_REQUEST_REJECTED Connection refused
 GK_REQUEST_WARNING Request accepted with some specified

warming
 GK_NO_MARKET_CONTEXT The market or clearing house context

is not available
 GK_REQUEST_ONGOING A previous submit operation on the

same transaction identifier is still on
going

 GK_NOT_CONNECTED Connection in not in place

Description: This function must be invoked to remove an active subscription. Subscriptions are not

removed when a client application logs off via the GK_Disconnect function.

5.13 GK_Inquire

GK_Reply_t GK_Inquire (GK_Context_t context,
 GK_ApplicationData_t* applicationData,
 GK_Callback_t pCallbackResponse,
 GK_Callback_t pCallbackData,
 GK_Tag_t gkTag;
 GK_Inquire_t* pInquiryID);

Parameters: context Context identifier
 applicationData Application Data layout to be

executed. It can be built using proper
functions (see below)

 pCallbackResponse Call-back to handle a notification
event for that request.

 pCallbackData Call-back to handle a notification
event containing returned data.

 gkTag User tag returned by the call-back
 pInquiryID Unique identifier for the requested

inquiry

Return values GK_SUCCESS Inquire request successfully executed

 GK_INVALID_CONTEXT Context not valid
 GK_API_ERROR Internal error
 GK_API_NOT_INITIALIZED API not initialized
 GK_SERVER_UNREACHABLE Server unreachable
 GK_OVERLOAD Application window is exhausted. The

caller must wait for completion of
some previous accepted requests

Programmer’s
Manual
January 2017

 27

 GK_INVALID_PARAMETER At least one of applicationData or
pInquiryID is null

 from pCallbackResponse
 GK_REQUEST_ACCEPTED Connection accepted
 GK_REQUEST_REJECTED Connection refused
 GK_REQUEST_WARNING Request accepted with some specified

warnings
 GK_NO_MARKET_CONTEXT The market or clearing house context

is not available
 GK_INVALID_FIELD The specified field name is invalid
 GK_MISSING_FIELD_VALUE Mandatory field is empty
 GK_INVALID_CLASS Class not valid
 GK_NOT_CONNECTED Connection has not been set
 GK_REQUEST_ONGOING A previous inquiry operation on the

same transaction identifier is still on
going

 GK_WRONG_PARAM Wrong parameters passed

Description: This function must be invoked to send an Inquire data structure to the BCS

Clearing system.

5.14 GK_GetVersion

GK_Reply_t GK_GetVersion(char** company,
 char** version,
 char** creationDate,
 char** comment);

Parameters company Company that distributes the GK-API
 version Version Identifier
 creationDate Creation date
 comment Any comment

Return
values:

GK_SUCCESS Request successfully executed

 GK_API_ERROR Internal error

Description This function must be invoked in order to know the current GK-API version.

The output parameters are allocated by the library and they must be
released by the client application using the GK_FreeString() function.

Programmer’s
Manual
January 2017

 28

5.15 GK_ConnectEx

GK_Reply_t GK_ConnectEx (GK_Context_t context,
 const char* userName,
 const char* password,
 const char* market,
 const char* ClientIP,
 const char* ClientData,
 GK_Callback_t pCallbackResponse,
 GK_Callback_t pCallbackMarketStatus,
 GK_Tag_t gkTag)

Parameters context Active context identifier through which a

connection must be performed.
 userName Name of the user requiring the

connection. Maximum allowed length:
40 characters.

 password Password of the user requiring the
connection. Maximum allowed length:
40 characters.

 market Market or Clearing House name to
which a connection is requested (e.g.
MTA, CCG, ...). Maximum allowed
length: 40 characters.

 ClientIP IP address of the client host. It is sent
to the server in order to univocally
identify the client. Maximum allowed
length: 15 characters.

 ClientData Free text sent to the server for log
purpose. Maximum allowed length: 512
characters.

 pCallbackResponse Callback to handle a notification event
for the related request.

 pCallbackMarketStatus Callback to handle a notification event
for the connection status

 gkTag User tag returned by the callback

Return
values:

GK_SUCCESS Connection request successfully
executed

 GK_API_ERROR Internal error
 GK_INVALID_CONTEXT Context is not valid
 GK_SERVER_UNREACHABLE Server unreachable
 GK_API_NOT_INITIALIZED API not initialized
 GK_COMMAND_ON_GOING A connection request is still on going

and a notification event for the
previous request must be received

 GK_CONTEXT_BUSY Context is already in use (a connection
on the context is already in place)

 GK_INVALID_PARAMETER At least one of userName, password,

Programmer’s
Manual
January 2017

 29

market, ClientIP or ClientData is null or
too long

 from pCallbackResponse
 GK_REQUEST_ACCEPTED Connection accepted
 GK_REQUEST_REJECTED Connection refused
 GK_ALREADY_CONNECTED Connection already in place
 GK_INVALID_MARKET Invalid MarketName
 GK_ACCESS_DENIED Unknown user
 GK_LICENCE_ERROR Maximum number of concurrent

connections exceeded
 GK_INSUFFICIENT_PRIVILEGES User cannot connect to the specified

market

 from pCallbackMarketStatus
 GK_MARKET_STATUS_NOTIFICATION
 GK_CONNECTION_UP All connections are active

 GK_CONNECTION_WARNING At least one connection is active, while
one or more other connections can be
down

 GK_CONNECTION_DOWN No connection is active

 GK_SERVER_DOWN Application server not reachable

 GK_TRANSACTION_STATUS_NOTIFICATION
 GK_CONNECTION_UP Transaction is active

 GK_CONNECTION_DOWN Transaction is not active

 GK_SUBSCRIPTION_STATUS_NOTIFICATION
 GK_CONNECTION_UP Subscription is active

 GK_CONNECTION_DOWN Subscription is not active

Description This function must be invoked in order to establish a connection to the BCS

Clearing system.

Programmer’s
Manual
January 2017

 30

6.0 Introduction to Callbacks

All callback functions have the following structure:

void Callback (GK_Context_t context,
GK_Data_t gkData,
GK_Tag_t gkTag);

The callback function is invoked by the GK-API to provide the calling application with
asynchronous notifications that can contains data or connection monitoring information. The
client application can define as many callbacks as required and then it can bind them to each
single request by passing its pointer to the function call.

To know the notification type belonging to the callback, the client application must invoke the
GK_GetNotificationType() function in the callback itself, passing the gkData parameter.

The following notification types are available:

• GK_MARKET_STATUS_NOTIFICATION
• GK_CONNECTION_RESPONSE_NOTIFICATION
• GK_DISCONNECTION_ RESPONSE _NOTIFICATION
• GK_TRANSACTION_ STATUS_NOTIFICATION
• GK_SUBSCRIPTION_STATUS_NOTIFICATION
• GK_SUBMIT_ RESPONSE _NOTIFICATION
• GK_SUBSCRIBE_ RESPONSE _NOTIFICATION
• GK_UNSUBSCRIBE_ RESPONSE _NOTIFICATION
• GK_INQUIRE_ RESPONSE _NOTIFICATION
• GK_NOTIFY_DATA_NOTIFICATION
• GK_INQUIRE_DATA_NOTIFICATION
• GK_SET_NOTIFICATION_PERIOD_NOTIFICATION
• GK_BINARY_INQUIRE_DATA_NOTIFICATION

After notification type detection, the calling application can invoke proper functions, as described
below. It is possible (even if not recommended) to receive all notification events through a
unique callback. It is recommended to process each received callback as soon as possible, in
order to avoid disconnections due to keep-alive timeout.

6.1 Connection request result

void ConnectionResp
(GK_Context_t

context,

 GK_Data_t gkData,
 GK_Tag_t gkTag);

Programmer’s
Manual
January 2017

 31

Parameters: context Context identifier
 gkData Data returned from the Notification

event
 gkTag User tag returned by the callback

Description The callback function pointer is passed to the connection request function.

The GK-API will call the callback whenever it must notify connection result.
If this callback function pointer is passed only to the connection request
function, it will be possible to receive only notification of the
GK_CONNECTION_RESPONSE_NOTIFICATION type. In order to know the
request result the GK_GetMarketResponse() function must be invoked
passing gkData.

6.2 Disconnect request result

void DisconnectionResp
(GK_Context_t

context,

 GK_Data_t gkData,
 GK_Tag_t gkTag);

Parameters: context Context identifier
 gkData Data returned from the Notification

event
 gkTag User tag returned by the callback

Description The callback function pointer is passed to the disconnection request function.

The GK-API will call the callback whenever it must notify disconnection
result. If this call-back function pointer is passed only to the connection
request function, it will be possible to receive only notifications of the
GK_DISCONNECTION_RESPONSE_NOTIFICATION type. In order to know
the request result the GK_GetMarketResponse() function must be invoked
passing gkData.

6.3 Connection monitoring

void MarketStatus (GK_Context_t context,
 GK_Data_t gkData,
 GK_Tag_t gkTag);

Parameters: context Context identifier
 gkData Data returned from the Notification event
 gkTag User tag returned by the callback

Programmer’s
Manual
January 2017

 32

Description The callback function pointer is passed to the connection request function.
The GK-API will call the callback whenever it must notify the market
connection status. If this callback function pointer is passed only to the
connection request function, it will be possible to receive notification of the
following types:

 GK_MARKET_STATUS_NOTIFICATION type

 GK_TRANSACTION_ STATUS_NOTIFICATION type

 GK_SUBSCRIPTION_STATUS_NOTIFICATION type

As regards the GK_MARKET_STATUS_NOTIFICATION type, it will possible
to receive the following notifications:

 The GK_CONNECTION_UP status means all connections are
active.

 The GK_CONNECTION_DOWN status means all connections are
inactive.

 The GK_CONNECTION_WARNING status means at least one
connection is active.

 The GK_SERVER_DOWN status means the connection to the
server is lost.

In order to know the status value, the GK_GetConnectionStatus() function
must be invoked passing gkData.

As regards the GK_TRANSACTION_STATUS_NOTIFICATION type it will be
possible to receive the following notifications:

 The GK_CONNECTION_UP status means the related transaction is
active.

 The GK_CONNECTION_DOWN status means the related
transaction is inactive.

In order to know the related transaction identifier, the
GK_GetTransactionID() function must be invoked passing gkData.

As regards the GK_SUBSCRIPTION_STATUS_NOTIFICATION type it will
be possible to receive the following notifications:

 The GK_CONNECTION_UP status means therelated subscription is
active.

 The GK_CONNECTION_DOWN status means the related
subscription is inactive. In this case, the calling application should
perform a new subscription from scratch.

In order to know the related subscription identifier, the
GK_GetSubscriptionID() function must be invoked passing gkData.

Programmer’s
Manual
January 2017

 33

6.4 Application message submission result

void SubmitResp (GK_Context_t context,
 GK_Data_t gkData,
 GK_Tag_t gkTag);

Parameters: context Context identifier
 gkData Data returned from the Notification

event
 gkTag User tag returned by the callback

Description The callback function pointer is passed to the submit request function. The

GK-API will call the callback whenever it must notify new results. If this
callback function pointer is passed only to the submit request function, it will
be possible to receive only notification of the
GK_SUBMIT_RESPONSE_NOTIFICATION type. In order to know the
submit result the GK_GetMarketResponse() function must be invoked
passing gkData. On the other hand, to know the transaction identifier
belonging to that submit the GK_GetTransactionID() function must be
invoked passing gkData.

6.5 Application message subscription result

void SubscribeResp (GK_Context_t context,
 GK_Data_t gkData,
 GK_Tag_t gkTag);

Parameters: context Context identifier
 gkData Data returned from the Notification

event
 gkTag User tag returned by the call-back

Description The callback function pointer is passed to the subscribe request function. The GK-

API will call the callback whenever it must notify new results. If this callback function
pointer is passed only to the subscribe request function, it will be possible to receive
only notification of the GK_SUBSCRIBE_RESPONSE_NOTIFICATION type. In
order to know the subscription identifier the GK_GetSubscriptionID() function must
be invoked passing gkData. On the other hand, to know the request result the
GK_GetMarketResponse() function must be invoked passing gkData.

Programmer’s
Manual
January 2017

 34

6.6 Application message unsubscription result

void UnSubscribeResp (GK_Context_t context,
 GK_Data_t gkData,
 GK_Tag_t gkTag);

Parameters: context Context identifier
 gkData Data returned from the Notification

event
 gkTag User tag returned by the call-back

Description The callback function pointer is passed to the unsubscribe request function. The

GK-API will call the callback whenever it must notify new results. If this callback
function pointer is passed only to the unsubscribe request function, it will be
possible to receive only notification of the
GK_UNSUBSCRIBE_RESPONSE_NOTIFICATION type. In order to know the
subscription identifier the GK_GetSubscriptionID() function must be invoked
passing gkData. On the other hand, to know the request result the
GK_GetMarketResponse() function must be invoked passing gkData.

6.7 Data inquiry request result

void InquireResp (GK_Context_t context,
 GK_Data_t gkData,
 GK_Tag_t gkTag);

Parameters: context Context identifier
 gkData Data returned from the Notification

event
 gkTag User tag returned by the call-back

Description The callback function pointer is passed to the snapshot subscription (inquiry)

request function. The GK-API will call the callback whenever it must notify a
result. If this callback function pointer is passed only to the snapshot
subscription request function, it will be possible to receive only notification of
the GK_INQUIRE_RESPONSE_NOTIFICATION type. In order to know the
submit result the GK_GetMarketResponse() function must be invoked
passing gkData. On the other hand, to know the enquiry identifier belonging
to that subscription the GK_GetInquireID() function must be invoked passing
gkData.

6.8 Data subscription notification

void NotifyData (GK_Context_t context,
 GK_Data_t gkData,

Programmer’s
Manual
January 2017

 35

 GK_Tag_t gkTag);

Parameters: context Context identifier
 gkData Data returned from the Notification

event
 gkTag User tag returned by the call-back

Description The callback function pointer is passed to the subscribe notification function.

The GK-API will call the callback whenever it must notify new data. If this
callback function pointer is passed only to the subscription request function,
it will be possible to receive only notification of the GK_NOTIFY_DATA
_NOTIFICATION type. In order to unpack incoming data the
GK_GetClassName(), GK_GetClassData(), GK_GetFieldClassData()
functions must be invoked passing gkData. On the other hand, to know the
subscription identifier belonging to that subscription, the
GK_GetSubscriptionID() function must be invoked passing gkData.

6.9 Data inquiry notification

void NotifyData (GK_Context_t context,
 GK_Data_t gkData,
 GK_Tag_t gkTag);

Parameters: context Context identifier
 gkData Data returned from the Notification

event
 gkTag User tag returned by the call-back

Programmer’s
Manual
January 2017

 36

Description The callback function pointer is passed to the snapshot subscription (inquiry)
notification function. The GK-API will call the callback whenever it must
notify new data. If this callback function pointer is passed only to the inquiry
request function, it will be possible to receive only notification of the
GK_INQUIRE_DATA_NOTIFICATION and GK_BINARY_INQUIRE_DATA
_NOTIFICATION types. The received notification type only depends on the
class used in the inquiry request.

In order to unpack incoming data of GK_INQUIRE_DATA_NOTIFICATION
type, the GK_GetClassName(), GK_GetClassData(),
GK_GetFieldClassData() functions must be invoked passing gkData. On the
other hand, to know the inquiry identifier belonging to that snapshot
subscription, the GK_GetInquireID() function must be invoked passing
gkData. Instead, in order to manage incoming data of
GK_BINARY_INQUIRE_DATA_NOTIFICATION type, the
GK_GetClassName() and GK_GetBinaryData() functions must be invoked
passing gkData. Data retrieved using the GK_GetBinaryData() function are
binary data. If multiple binary notifications are received on an inquiry request,
user have to concatenate each binary data segment in the order they are
received to obtain the whole inquiry response data. Depending on the class
used in the inquiry request, the received binary data can be compressed by
the server. To decompress binary data, the GK_UnzipBinaryData function
must be invoked (see section 9.0).

Programmer’s
Manual
January 2017

 37

7.0 Retrieving data from callback objects

7.1 Connection request result

GK_Reply_t GK_FreeString (char* data);

Parameters: data Data to be freed

Return
values:

GK_SUCCESS Function successfully completed

Description: This function must be invoked to release all string-type and binary-type data

allocated by the GK-API.

7.2 GK_GetNotificationType

GK_Reply_t GK_GetNotificationType
(GK_Data_t

gkData,

 GK_Notification_t* pNotificationType);

Parameters: gkData Handle of available data
 pNotificationType Notification type

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_INVALID_HANDLE The referred handle is not valid
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked in order to extract the notification type related

to a callback. The function can be used for any notification type.

7.3 GK_GetConnectionStatus

GK_Reply_t GK_GetConnectionStatus
(GK_Data_t

gkData,

 GK_ Status_t* pMarketStatus);

Parameters: gkData Handle of available data
 pMarketStatus Connection status

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

Programmer’s
Manual
January 2017

 38

 GK_INVALID_HANDLE The referred handle is not valid
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked in order to extract the connection status

notified by a callback. The function can be used only for the following
notification types:

 GK_MARKET_STATUS_NOTIFICATION

 GK_TRANSACTION_STATUS_NOTIFICATION

 GK_SUBSCRIPTION_STATUS_NOTIFICATION

7.4 GK_GetTransactionID

GK_Reply_t GK_ GetTransactionID
(GK_Data_t

gkData,

 GK_Transaction_t* pTransaction);

Parameters: gkData Handle of available data
 pTransaction Transaction identifier

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_INVALID_HANDLE The referred handle is not valid
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked in order to extract the transaction identifier

notified by a callback. The function can be used only for the following
notification types:

 GK_SUBMIT_RESPONSE_NOTIFICATION

 GK_TRANSACTION_STATUS_NOTIFICATION

7.5 GK_GetMarketResponse

GK_Reply_t GK_GetMarketResponse
(GK_Data_t

gkData,

 GK_MarketReply_t* pReply,
 char** specification);

Parameters: gkData Handle of available data
 pReply Reply coming from the market
 specification Subscription status

Return GK_SUCCESS Function successfully completed

Programmer’s
Manual
January 2017

 39

values:
 GK_FAILED Function not completed
 GK_INVALID_HANDLE The referred handle is not valid
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked in order to extract the market reply notified by

a callback. The specification parameter is allocated by the GK-API and
must be released by the calling application by using the GK_FreeString
function. The function can be used only for the following notification types:

 GK_SUBMIT_RESPONSE_NOTIFICATION

 GK_CONNECTION_RESPONSE_NOTIFICATION

 GK_DISCONNECTION_RESPONSE_NOTIFICATION

 GK_SUBMIT_RESPONSE_NOTIFICATION

 GK_SUBSCRIBE_RESPONSE_NOTIFICATION

 GK_UNSUBSCRIBE_RESPONSE_NOTIFICATION

 GK_INQUIRE_RESPONSE_NOTIFICATION

7.6 GK_GetSubscriptionID

GK_Reply_t GK_GetSubscriptionID
(GK_Data_t

gkData,

 GK_Subscription_t* pSubscription);

Parameters: gkData Handle of available data
 pSubscription Subscription identifier

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_INVALID_HANDLE The referred handle is not valid
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked in order to extract the subscription identifier

notified by a callback. The function can be used only for the following
notification types:

 GK_SUBSCRIBE_RESPONSE_NOTIFICATION

 GK_UNSUBSCRIBE_RESPONSE_NOTIFICATION

 GK_SUBSCRIPTION_STATUS_NOTIFICATION

 GK_NOTIFY_DATA_NOTIFICATION

Programmer’s
Manual
January 2017

 40

7.7 GK_GetInquireID

GK_Reply_t GK_GetInquireID (GK_Data_t gkData,
 GK_Inquire_t* pInquire);

Parameters: gkData Handle of available data
 pInquire Inquiry identifier

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_INVALID_HANDLE The referred handle is not valid
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked in order to extract the inquiry identifier notified

by a callback. The function can be used only for the following notification
types:

 GK_INQUIRE_RESPONSE_NOTIFICATION

 GK_INQUIRE_DATA_NOTIFICATION

 GK_BINARY_INQUIRE_DATA_NOTIFICATION

7.8 GK_GetClassName

GK_Reply_t GK_GetClassName
(GK_Data_t

gkData,

 char** className,
 GK_ClassType_t* pClassType);

Parameters: gkData Handle of available data
 className Class name
 pClassType Class type

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_INVALID_HANDLE The referred handle is not valid
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Programmer’s
Manual
January 2017

 41

Description: This function must be invoked in order to extract the class name notified by a
callback. The className parameter is allocated by the GK-API and must be
released by the calling application using the GK_FreeString function. The
function can be used only for the following notification types:

 GK_NOTIFY_DATA_NOTIFICATION

 GK_INQUIRE_DATA_NOTIFICATION

 GK_BINARY_INQUIRE_DATA_NOTIFICATION

7.9 GK_DecodeData

GK_Reply_t GK_DecodeData (GK_Data_t gkData,
 char** data);

Parameters: gkData Handle of available data
 data Application data

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_INVALID_HANDLE The referred handle is not valid
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked in order to extract the application data (string)

notifyed by a callback. The data parameter is allocated by the GK-API and
must be released by the calling application using GK_FreeString. The
function can be used only for the following notification types:

 GK_NOTIFY_DATA_NOTIFICATION

 GK_INQUIRE_DATA_NOTIFICATION

7.10 GK_GetValueString

GK_Reply_t GK_GetValueString (GK_Data_t gkData,
 const char* Key ,
 char** value);

Parameters: gkData Handle of available data
 Key Filed name of the application data
 Value Returned value of requested filed

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed

Programmer’s
Manual
January 2017

 42

 GK_INVALID_HANDLE The referred handle is not valid
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized
 GK_TYPE_MISMATCH The requested Key does not exist

Description: This function must be invoked in order to extract the application data (string) from the

message notified by a callback. The Value parameter is allocated and returned by
the GK-API and must be released by the calling application using the GK_FreeString
function. The function can be used only for the following notification types:

 GK_NOTIFY_DATA_NOTIFICATION

 GK_INQUIRE_DATA_NOTIFICATION

7.11 GK_GetValueLong

GK_Reply_t GK_GetValueLong (GK_Data_t gkData,
 const char* key,
 long* value);

Parameters: gkData Handle of available data
 Key Filed name of the application data
 Value Returned value of requested field

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_INVALID_HANDLE The referred handle is not valid
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized
 GK_TYPE_MISMATCH The requested Key does not exist

Description: This function must be invoked in order to extract the application data (long) from

the message notified by a callback. The function can be used only for the
following notification types:

 GK_NOTIFY_DATA_NOTIFICATION

 GK_INQUIRE_DATA_NOTIFICATION

7.12 GK_GetValueDouble

GK_Reply_t GK_GetValueDouble (GK_Data_t gkData,
 const char* key ,
 double* value);

Parameters: gkData Handle of available data

Programmer’s
Manual
January 2017

 43

 Key Filed name of the application data
 Value Returned value of requested field

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_INVALID_HANDLE The referred handle is not valid
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized
 GK_TYPE_MISMATCH The requested Key does not exist

Description: This function must be invoked in order to extract the application data (double)

from the message notified by a callback. The function can be used only for the
following notification types:

 GK_NOTIFY_DATA_NOTIFICATION

 GK_INQUIRE_DATA_NOTIFICATION

7.13 GK_GetValueInt

GK_Reply_t GK_GetValueInt (GK_Data_t gkData,
 const char* key,
 int* value);

Parameters: gkData Handle of available data
 Key Filed name of the application data
 value Returned value of requested field

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_INVALID_HANDLE The referred handle is not valid
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized
 GK_TYPE_MISMATCH The requested Key does not exist

Description: This function must be invoked in order to extract the application data

(integer) from message notified by a callback. The function can be used only
for the following notification types:

 GK_NOTIFY_DATA_NOTIFICATION

 GK_INQUIRE_DATA_NOTIFICATION

Programmer’s
Manual
January 2017

 44

7.14 GK_GetChain

GK_Reply_t GK_GetChain (GK_Data_t gkData,
 GK_Chain_t* pChain);

Parameters: gkData Handle of available data
 pChain Data chain

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_INVALID_HANDLE The referred handle is not valid
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized
 GK_TYPE_MISMATCH The requested Key does not exist

Description: This function must be invoked in order to extract the inquiry status notified by

a callback. The function can be used only for the following notification types:

 GK_INQUIRE_DATA_NOTIFICATION

 GK_BINARY_INQUIRE_DATA_NOTIFICATION

7.15 GK_GetBinaryData

GK_Reply_t GK_GetBinaryData (GK_Data_t gkData,
 GK_Byte_t** pData,
 GK_Length_t* pDataLength);

Parameters: gkData Handle of available data
 pData Application binary data buffer
 pDataLength Returned length of binary data buffer

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_INVALID_HANDLE The referred handle is not valid
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked in order to extract the application binary data

notifyed by a callback. The pData parameter is allocated by the GK-API and must
be released by the calling application using GK_FreeString. The function can be
used only for the following notification types:

 GK_BINARY_INQUIRE_DATA_NOTIFICATION

Programmer’s
Manual
January 2017

 45

8.0 Building application data messages

8.1 GK_CreateApplicationData

GK_Reply_t GK_CreateApplicationData
(const char*

className,

 GK_ClassType_t classType,
 GK_ApplicationData_t** pApplicationData);

Parameters: className Data class name
 classType Data class type
 pApplicationData Pointer to the message structure

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked to create an application message

pApplicationData The pApplicationData parameter is allocated and
returned by the GK-API and must be released by the calling application
using the GK_FreeApplicationData() function.

8.2 GK_EncodeData

GK_Reply_t GK_EncodeData
(GK_ApplicationData_t*

pApplicationData,

 const char* data);

Parameters pApplicationData Pointer to the message structure to be

filled
 data Application fields (format: “field=value;

field=value;..”)

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked to insert the application message using the

following format: “field=value”. As opposed to the GK_Set… functions (which
set a single field value at the time), this function will set the complete
message string abiding by the message layout.

Programmer’s
Manual
January 2017

 46

8.3 GK_SetValueString

GK_Reply_t GK_SetValueString
(GK_ApplicationData_t*

pApplicationData,

 const char* key,
 const char* value);

Parameters pApplicationData Pointer to the message structure to be

filled
 Key Application filed name
 Value Field value to insert

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked to assign the value “value” to the field “key” . If

a value already exists, the new value will replace the previous one.

8.4 GK_SetValueLong

GK_Reply_t GK_SetValueLong
(GK_ApplicationData_t*

pApplicationData,

 const char* key,
 long value);

Parameters pApplicationData Pointer to the message structure to be

filled
 Key Application filed name
 Value Field value to insert

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked to assign the value “value” to the field “key” . If

a value already exists, the new value will replace the previous one.

8.5 GK_SetValueDouble

GK_Reply_t GK_SetValueDouble
(GK_ApplicationData_t*

pApplicationData,

 const char* key,

Programmer’s
Manual
January 2017

 47

 double value);

Parameters pApplicationData Pointer to the message structure to be

filled
 key Application filed name
 value Field value to insert

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked to assign the value “value” to the field “key” . If

a value already exists, the new value will replace the previous one.

8.6 GK_SetValueInt

GK_Reply_t GK_SetValueInt
(GK_ApplicationData_t*

pApplicationData,

 const char* key,
 int value);

Parameters pApplicationData Pointer to the message structure to be

filled
 key Application field name
 value Field value to insert

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked to assign the value “value” to the field “key” . If

a value already exists, the new value will replace the previous one.

8.7 GK_DestroyApplicationData

GK_Reply_t GK_ DestroyApplicationData
(GK_ApplicationData_t*

pApplicationData);

Parameters pApplicationData Pointer to the message structure to be

filled

Return GK_SUCCESS Function successfully completed

Programmer’s
Manual
January 2017

 48

values:
 GK_FAILED Function not completed
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked to release the message structure.

8.8 GK_SetTransactionID

GK_Reply_t GK_SetTransactionID
(GK_ApplicationData_t*

pApplicationData,

 GK_Transaction_t transaction);

Parameters pApplicationData Pointer to the message structure to be

filled
 transaction Transaction identifier

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked to insert a transaction identifier within an

application message. This type of application message is needed to
subscribe information related to the related transaction (e.g. status, proposal
information belonging to the transaction).

Programmer’s
Manual
January 2017

 49

9.0 Unzipping callback functions

Binary compressed data received on notification of GK_BINARY_INQUIRE_DATA_
NOTIFICATION type can be decompressed using the GK_UnzipBinaryData() function, which
provides an in-memory decompression mechanism including integrity checks of the
uncompressed data.

To call the GK_UnzipBinaryData() function, user application must provide an input buffer
containing the binary compressed data and an output buffer that will receive the uncompressed
data. If the input buffer contains all the binary compressed data and the output buffer is large
enough, decompression can be done in a single step. Otherwise, the unzip activity can be done
by repeated calls of the GK_UnzipBinaryData() function. In the latter case, the user application
must provide more input and/or consume the output (providing more output space) before each
call. The GK_UnzipBinaryData() function provides each time as much output as possible, until
there is no more input data or no more space in the output buffer.

In order to use the GK_UnzipBinaryData() function, user application must also provide a
parameter of GK_UnzipHelper_t type, which is an internal structure managed by the GK-API
during the unzip process. Before starting to unzip binary data, user application has to create an
instance of GK_UnzipHelper_t type by means of the GK_CreateUnzipHelper() function. Then, in
order to provide the input data buffer, user have to initialize the GK_UnzipHelper_t structure
using the GK_InitializeUnzipHelper() function; this function has to be called every time more
input is needed to complete the unzip process. After that, user application have to repeatedly
call the GK_UnzipBinaryData() function until no more output is available. When the unzip
process is terminated (as well as or an error has occurred), the helper structure has to be
cleared using the GK_ClearUnzipHelper() function. Finally, the helper structure has to be
released using the GK_DestroyUnzipHelper() function since it cannot be reused to start another
unzip session.

9.1 GK_CreateUnzipHelper

GK_Reply_t GK_CreateUnzipHelper
(GK_UnzipHelper_t*

pUnzipHelper);

Parameters: pUnzipHelper Pointer to the returned internal helper

structure

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized

Programmer’s
Manual
January 2017

 50

Description: This function must be invoked to create an internal helper structure
pUnzipHelper. The pUnzipHelper parameter is allocated and returned by the
GK-API and must be released by the calling application using the
GK_DestroyUnzipHelper() function.

9.2 GK_DestroyUnzipHelper

GK_Reply_t GK_DestroyUnzipHelper
(GK_UnzipHelper_t

unzipHelper);

Parameters: unzipHelper Internal helper structure created using

GK_CreateUnzipHelper()

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked to deallocate an internal helper structure

allocated using the GK_CreateUnzipHelper() function.

9.3 GK_InitializeUnzipHelper

GK_Reply_t GK_InitializeUnzipHelper
(GK_UnzipHelper_t

unzipHelper,

 const GK_Byte_t* Data,
 GK_Length_t DataLength);

Parameters: unzipHelper Internal helper structure created using

GK_CreateUnzipHelper()
 Data Pointer to a user buffer containing

binary data to be unzipped
 DataLength Length of the data in the user buffer

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_API_NOT_INITIALIZED GK-API not initialized
 GK_INVALID_PARAMETER Value of parameter DataLength is not

valid

Description: This function must be invoked to initialize an internal helper structure

allocated using the GK_CreateUnzipHelper() function. If binary data has to
be unzipped in a single step, the Data parameter must point to a buffer
containing all the binary data to be unzipped; otherwise, the Data parameter
can point to a buffer containing only a part of the binary data to be unzipped.

Programmer’s
Manual
January 2017

 51

9.4 GK_ClearUnzipHelper

GK_Reply_t GK_ClearUnzipHelper
(GK_UnzipHelper_t

unzipHelper);

Parameters: unzipHelper Internal helper structure created using

GK_CreateUnzipHelper()

Return
values:

GK_SUCCESS Function successfully completed

 GK_FAILED Function not completed
 GK_API_NOT_INITIALIZED GK-API not initialized

Description: This function must be invoked to clear an internal helper structure allocated

using the GK_CreateUnzipHelper() function. Internal helper structures used
to unzip binary data must be cleared after each unzip session is terminated,
successfully or unsuccessfully.

9.5 GK_UnzipBinaryData

GK_Reply_t GK_UnzipBinaryData
(GK_UnzipHelper_t

unzipHelper,

 char* buffer,
 GK_Length_t bufferLength,
 GK_Length_t* pDataLength);

Parameters: unzipHelper Internal helper structure created using

GK_CreateUnzipHelper()
 buffer Pointer to a user output buffer
 bufferLength Length of user output buffer
 pDataLength Returned length of unzipped data

Return
values:

GK_SUCCESS Function successfully completed. All
the binary data have been unzipped,
i.e. the end of the compressed data
has been reached and all
uncompressed output has been
produced

 GK_MORE_OUTPUT_AVAILABLE Function successfully completed. User
buffer is full and the function must be
called again because there might be
more output pending

 GK_MORE_INPUT_NEEDED Function successfully completed. All
provided binary data have been
unzipped and the function must be
called again providing more input
binary data to complete the unzip
process.

Programmer’s
Manual
January 2017

 52

 GK_FAILED Function not completed
 GK_API_ ERROR Internal error
 GK_API_NOT_INITIALIZED GK-API not initialized
 GK_INVALID_PARAMETER Value of parameter bufferLength is not

valid
 GK_DATA_ERROR Supplied data are invalid or corrupted.

Description: This function must be invoked to unzip compressed binary data. This

function decompresses as much data as possible, and stops when the input
buffer becomes empty or the output buffer becomes full.

Programmer’s
Manual
January 2017

 53

10.0 Recovery

This section describes the recovery process implemented by the BCS system and the actions to
be taken when the system notifies the events concerning the services. In order to receive the
connection status, the client application has to invoke the
Subscribe.System.ServiceMarketStatus subscription class and it has to evaluate the data
provided by the Notify.System.ServiceMarketStatus callback function.

Instead, events concerning the status of the connection between client and server are provided
through the MarketStatus callback (see section 6.3).

10.1 Services

The BCS system is based on a set of services, each one managing a specific set of functions. It
is possible to be notified about the status of a single service of the system. Possible values for
service id are the following:

Service ServiceID Description

Risk Manager 2000 The service that manages all Risk
Management requests

Clearing Data Manager 2100 The service that stores all market
realtime data

Report Manager 2200 The service that manages all report
requests

Transactional Gateway 2300 The gateway that connects to CC&G
Clearing system and manages all
transactional requests

Realtime Gateway 2400 The gateway that connects to CC&G
Clearing system and receives real time
data

Sola Gateway 2500 The service that manages the
connection to SOLA Derivatives

Is it possible, using API, still call a Subscribe.System.ServiceMarketStatus that include a group
of components (ServiceID=100). This layout is obsolete and will be dismissed soon.

Programmer’s
Manual
January 2017

 54

Please note that in the following tables the length column stands for the maximum length of the
field.

10.2 Subscribe.System.ServiceMarketStatus

Request the service market connection status. The status is notified by
Notify.System.ServiceMarketStatus.

Field Type Length Description

ServiceID integer 10 The ID of the service

RequestedMember string 100 Not mandatory.

10.3 Notify.System.ServiceMarketStatus

Notify the service connection status.

Field Type Length Description

Member String 100 Member name.

ServiceID integer 10 The ID of the service

Market string 100 Market identifier

Status string 50 The connection status of the service
<ServiceID> operating on the market
<Market> for the member <Member>.

The possible values are:

CONNECTION_UP: the service is
available.

CONNECTION_CRASH: the service is
not available

The following actions need to be taken when Notify.System.ServiceMarketStatus events are
received:

Programmer’s
Manual
January 2017

 55

CONNECTION_UP The connection is successfully established:
the user can start its activity.

CONNECTION_CRASH The service is no longer available:

the user should wait for a CONNECTION_UP
event in order to restart its activity. All the
Subscribe calls executed before the
CONNECTION_CRASH event should be
called again by the user.

Please note that the status “CONNECTION_DOWN” and “CONNECTION_WARNING” has
been dismissed so is not possible receive this notifies.

10.4 Recovery Simulation in CDS (Test) environment

It’s possible to test the System.ServiceMarketStatus messages receiption in the CDS (Test)
environment every Tuesday. Two sessions are available, one starting at 10:00 (GMT) and one
starting at 15:00 (GMT).

After the login to the system, the user should send a Subscribe.System.ServiceMarketStatus
message for each service managed by his application, in order to receive the related status
updates (as per highlighted in the table at section 10.1).

The crash simulation of the BCS components will be executed as follows:

GMT Time Description

10:00 / 15:00 The component Report Manager crashes; one
or more messages with status

CONNECTION_CRASH and ServiceId=2200
are received.

10:05 / 15:05 The component Report Manager is restored;
one or more messages with status

CONNECTION_UP and ServiceId=2200 are
received.

Programmer’s
Manual
January 2017

 56

GMT Time Description

10:15 / 15:15 The component Realtime Gateway crashes;
one or more messages with status

CONNECTION_CRASH and ServiceId=2400
are received.

10:20 / 15:20 The component Realtime Gateway is restored;
one or more messages with status

CONNECTION_UP and ServiceId=2400 are
received.

10:30 / 15:30 The component Transactional Gateway
crashes; one or more messages with status

CONNECTION_CRASH and ServiceId=2300
are received.

10:35 / 15:35 The component Transactional Gateway is
restored; one or more messages with status
CONNECTION_UP and ServiceId=2300 are

received.

10:45 / 15:45 The component Clearing Data Manager
crashes; one or more messages with status

CONNECTION_CRASH and ServiceId=2100
are received.

10:50 / 15:50 The component Clearing Data Manager is
restored; one or more messages with status
CONNECTION_UP and ServiceId=2100 are

received.

11:00 / 16:00 The component Risk Managment crashes;
one or more messages with status

CONNECTION_CRASH and ServiceId=2000
are received.

11:05 / 16:05 The component Risk Managment is restored;
one or more messages with status

CONNECTION_UP and ServiceId=2000 are

Programmer’s
Manual
January 2017

 57

GMT Time Description

received.

11:15 / 16:15 The component Sola Gateway crashes; one or
more messages with status

CONNECTION_CRASH and ServiceId=2500
are received.

11:20 / 16:20 The component Risk Managment is restored;
one or more messages with status

CONNECTION_UP and ServiceId=2500 are
received.

After every recovery simulation session, the system becomes available as per the usual
schedule.

An additional Connection Crash on the Transactional Gateway component may be received
during the recovery sessions. This is caused by CCG settlement procedures.

Please note that, in case a user sends more than a Subscribe.System.MarketStatus for the
same ServiceId, it will receive a number of CONNECTION_CRASH and CONNECTION_UP
messages equal to the number of Subscribe.System.ServiceMarketStatus active (accepted by
the system).

For instance, if a user has 3xSubscribe.System.ServiceMarketStatus active with
ServiceId=2300, it will receive 3xNotify.System.ServiceMarketStatus with status
CONNECTION_CRASH and ServiceId=2300 followed by
3xNotify.System.ServiceMarketStatus with status CONNECTION_UP and ServiceId=2300.

Each and all information contained in this document are confidential, legally privileged and protected by applicable law. Any

disclosure, distribution, copying or other diffusion of this communication is strictly prohibited. If you have received this

document or part of it in error, are not the intended recipient, nor an employee or agent responsible for delivering this message

to the intended recipient, please immediately notify Borsa Italiana S.p.A., at service-desk@borsaitaliana.it. Your co-operation is

appreciated.

Contacts

Service Desk Italy, Borsa Italiana

Client Technology Services Italy, LSEG
Email service-desk@borsaitaliana.it
www.borsaitaliana.it

mailto:membership@borsaitaliana.it
mailto:service-desk@borsaitaliana.it

